The dust collection industry now has its first standard to provide a quantitative laboratory test method for determining the performance of industrial pulse cleaned dust collectors. The ANSI/ASHRAE Standard 199-2016 was jointly published on June 1, 2016, by the American Society of Heating and Air Conditioning Engineers (ASHRAE) and the American Standards Testing Institute (ANSI). ANSI/ASHRAE Standard 199-2016 specifies test methods to measure emissions, differential pressure, and compressed air consumption in pulse cleaned dust collectors under realistic operating conditions.

For years, the dust collection industry was limited to stating the filter elements Minimum Efficiency Reporting Value, or MERV rating. The MERV rating as specified by ASHRAE 52.2-1999 exclusively focuses on the filtration efficiency of a filter element under controlled laboratory testing that mimics industrial HVAC systems. While the MERV rating is useful for HVAC systems, does not adequately address performance characteristics for dust collector operation. The approach developed in ANSI/ASHRAE 199-2016 is intended to be a “black box” concept where the dust collection system being evaluated is operated per the instructions in the standard without modification. The test procedure is not concerned with internal operation of the dust collector, rather the actual performance of each physical part of the dust collector itself.

The ANSI/ASHRAE Standard 199-2016 test procedure includes six stages as outlined in Figure 1 below.
Figure 1. Schematic showing sequence of test stages.
Stage 1: Initial Dust Loading
This stage loads dust collector to a predetermined differential pressure (dP) with no pulse cleaning.

Stage 2: Initial Dust Loading with On-Demand Cleaning
This stage starts the pulse cleaning system in the “On-Demand” interval where the cleaning frequency is determined by a High dP and Low dP and this stage lasts for 4 hours.

Stage 3: Initial Dust Loading with Continuous Cleaning
This stage changes the pulse cleaning frequency to a continuous operation and lasts for 24 hours or until a predetermined maximum differential pressure is reached.

Stage 4: Final Dust Loading with On-Demand Cleaning
This second, longer On-Demand cleaning stage lasts for 20 hours.

Stage 5: Up-Set Condition
This stage turns the cleaning system off and continues to feed the dust until the differential pressure reaches 10 inches of water gage (inWG).

Stage 6: Post Up-Set Condition
This final stage reduces the airflow to 25% specified airflow, pulses each filter 10 times and then returns the air flow to 100% specified airflow.

While the testing process and stages are defined by the standard, many testing parameters are specified by the test requestor and can influence the performance results. The parameters specified by the test requestor include:

- Specified Airflow – Actual Cubic Feet per Minute (ACFM)
- Filter Media – Square Feet (ft²) and resulting Air-to-Cloth Ratio
- Pulse Cleaning System High & Low Differential Pressure Set Points – inches of Water Gage (inWG)
- Off Time delay between pulses – seconds (s)
- On Time pulse duration – milliseconds (ms)
- Pulse cleaning system pressure – pounds per square inch (psi)
- Pulse cleaning system air consumption – Cubic Feet (ft³)

Once the testing has been completed per the standard, the parameters and data are presented in table and graphical form in a format prescribed by ANSI/ASHRA 199-2016 and an example report is shown in Figures 2 through Figure 4.
Figure 2. Example of Completed Test Report Page 1.

Figure 3. Example of Completed Test Report Page 2.

Figure 4. Example of Completed Test Report Page 3.